Electrochemistry-enabled fabrication of orthogonal nanotopography and surface chemistry gradients for high-throughput screening.

نویسندگان

  • Lauren R Clements
  • Peng-Yuan Wang
  • Wei-Bor Tsai
  • Helmut Thissen
  • Nicolas H Voelcker
چکیده

Gradient surfaces are emerging tools for investigating mammalian cell-surface interactions in high throughput. We demonstrate the electrochemical fabrication of an orthogonal gradient platform combining a porous silicon (pSi) pore size gradient with an orthogonal gradient of peptide ligand density. pSi gradients were fabricated via the anodic etching of a silicon wafer with pore sizes ranging from hundreds to tens of nanometers. A chemical gradient of ethyl-6-bromohexanoate was generated orthogonally to the pSi gradient via electrochemical attachment. Subsequent hydrolysis and activation of the chemical gradient allowed for the generation of a cyclic RGD gradient. Whilst mesenchymal stem cells (MSC) were shown to respond to both the topographical and chemical cues arising from the orthogonal gradient, the MSC's responded more strongly to changes in RGD density than to changes in pore size during short-term culture.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Surface-chemical and -morphological gradients

Surface gradients of chemistry or morphology represent powerful tools for the high-throughput investigation of interfacial phenomena in the areas of physics, chemistry, materials science and biology. A wide variety of methods for the fabrication of such gradients has been developed in recent years, relying on principles ranging from diffusion to time-dependent irradiation in order to achieve a ...

متن کامل

Directional nanotopographic gradients: a high-throughput screening platform for cell contact guidance

A novel approach was developed using PDMS-substrates with surface-aligned nanotopography gradients, varying unidirectional in amplitude and wavelength, for studying cell behavior with regard to adhesion and alignment. The gradients target more surface feature parameters simultaneously and provide more information with fewer experiments and are therefore vastly superior with respect to individua...

متن کامل

Inkjet printing of growth factor concentration gradients and combinatorial arrays immobilized on biologically-relevant substrates.

Current methods for engineering immobilized, 'solid-phase' growth factor patterns have not addressed the need for presentation of the growth factors in a biologically-relevant context. We developed an inkjet printing methodology for creating solid-phase patterns of unmodified growth factors on native biological material substrates. We demonstrate this approach by printing gradients of fluoresce...

متن کامل

Gradients in surface nanotopography used to study platelet adhesion and activation.

Gradients in surface nanotopography were prepared by adsorbing gold nanoparticles on smooth gold substrates using diffusion technique. Following a sintering procedure the particle binding chemistry was removed, and integration of the particles into the underlying gold substrate was achieved, leaving a nanostructured surface with uniform surface chemistry. After pre-adsorption of human fibrinoge...

متن کامل

Assessing embryonic stem cell response to surface chemistry using plasma polymer gradients.

The control of cell-material interactions is the key to a broad range of biomedical interactions. Gradient surfaces have recently been established as tools allowing the high-throughput screening and optimization of these interactions. In this paper, we show that plasma polymer gradients can reveal the subtle influence of surface chemistry on embryonic stem cell behavior and probe the mechanisms...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Lab on a chip

دوره 12 8  شماره 

صفحات  -

تاریخ انتشار 2012